勾股定理:在任何一個(gè)平面直角三角形中的兩直角邊的平方之和一定等于斜邊的平方。在△ABC中,∠C=90°,則a2+b2=c2。勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他學(xué)科中也有著極為廣泛的應(yīng)用。
中國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家之一。中國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前1120年)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤(pán),得成三四五。兩矩共長(zhǎng)二十有五,是謂積矩?!币虼?,勾股定理在中國(guó)又稱“商高定理”。在公元前7至6世紀(jì)一中國(guó)學(xué)者陳子,曾經(jīng)給出過(guò)任意直角三角形的三邊關(guān)系:以日下為勾,日高為股,勾、股各乘并開(kāi)方除之得斜至日。
1、勾股定理是聯(lián)系數(shù)學(xué)中最基本也是最原始的兩個(gè)對(duì)象——數(shù)與形的第一定理。
2、勾股定理導(dǎo)致不可通約量的發(fā)現(xiàn),從而深刻揭示了數(shù)與量的區(qū)別,即所謂“無(wú)理數(shù)"與有理數(shù)的差別,這就是所謂第一次數(shù)學(xué)危機(jī)。
3、勾股定理開(kāi)始把數(shù)學(xué)由計(jì)算與測(cè)量的技術(shù)轉(zhuǎn)變?yōu)樽C明與推理的科學(xué)。
4、勾股定理中的公式是第一個(gè)不定方程,也是最早得出完整解答的不定方程,它一方面引導(dǎo)到各式各樣的不定方程,另一方面也為不定方程的解題程序樹(shù)立了一個(gè)范式。
以上是小編整理的關(guān)于勾股定理的知識(shí)點(diǎn),希望能幫到你。
勾股定理是八年級(jí)學(xué)的。勾股定理又稱商高定理、畢達(dá)哥拉斯定理,簡(jiǎn)稱“畢氏定理”,是平面幾何中一個(gè)基本而重要的定理。勾股定理說(shuō)明,平面上的直角三...
勾股定理是我們初中階段必須要學(xué)習(xí)的一個(gè)定理,那么什么是勾股定理呢?小編在本文中為大家整理了勾股定理的相關(guān)知識(shí)點(diǎn),一起來(lái)看看吧!
根據(jù)勾股定理,弦是√2。勾股定理,是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國(guó)古代稱直角三角形為勾股形,并且直...
在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方加起來(lái)等于斜邊長(zhǎng)的平方。如果直角三角形兩直角邊分別為A和B,斜邊為C,那么A2+B2=C2。...
“勾三股四弦五”是勾股定理的一個(gè)特別的例子。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜...
3,4,5:勾三股四弦五;5,12,13:5月12記一生(13);6,8,10:連續(xù)的偶數(shù);8,15,17:八月十五在一起(17)。勾股定理...
初二上學(xué)期第一單元開(kāi)始學(xué)習(xí)勾股定理。勾股定理又稱商高定理、畢達(dá)哥拉斯定理,簡(jiǎn)稱“畢氏定理”,是平面幾何中一個(gè)基本而重要的定理。勾股定理說(shuō)明,...
在初中的學(xué)習(xí)中,勾股定理是數(shù)學(xué)里的重要內(nèi)容,小編為大家整理了一些有關(guān)勾股定理的知識(shí),大家快跟小編一起來(lái)學(xué)習(xí)一下吧。