亚洲热线 99 精品视频|精品中文字幕在线观看|香蕉伊蕉中文在线视频播放|色综合视频一区二区观看

  1. <blockquote id="pxt9n"><strong id="pxt9n"></strong></blockquote>
  2. <dl id="pxt9n"></dl>

    <strike id="pxt9n"><label id="pxt9n"></label></strike>
    <i id="pxt9n"></i>
      全國(guó)

      當(dāng)前位置:

    • 熱門(mén)地區(qū):
    • 選擇地區(qū):
    • ×
    當(dāng)前位置: 初三網(wǎng) > 初中數(shù)學(xué) > 數(shù)學(xué)知識(shí)點(diǎn) > 正文

    勾股定理是勾三股四弦五嗎

    2020-12-12 16:45:53文/張孟影

    “勾三股四弦五”是勾股定理的一個(gè)特別的例子。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。

    勾股定理是勾三股四弦五嗎

    勾股定理是什么

    勾股定理:如果直角角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a^2+b^2=c^2

    勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足a^2+b^2=c^2,那么這個(gè)三角形是直角三角形。

    經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。

    我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

    查看更多【數(shù)學(xué)知識(shí)點(diǎn)】?jī)?nèi)容