0是實(shí)數(shù)的。實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),點(diǎn)相對(duì)應(yīng)的數(shù)。實(shí)數(shù)可以直觀地看作有限小數(shù)與無限小數(shù),實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。0是介于-1和1之間的整數(shù),是最小的自然數(shù),也是有理數(shù)。0既不是正數(shù)也不是負(fù)數(shù),而是正數(shù)和負(fù)數(shù)的分界點(diǎn)。所以0是實(shí)數(shù)的。
實(shí)數(shù)是有理數(shù)和無理數(shù)的總稱。
實(shí)數(shù)包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括無限循環(huán)小數(shù)、有限小數(shù)、整數(shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。本來實(shí)數(shù)僅稱作數(shù),后來引入了虛數(shù)概念,原本的數(shù)稱作“實(shí)數(shù)”--意義是“實(shí)在的數(shù)”。
實(shí)數(shù)可以分為有理數(shù)和無理數(shù)兩類,或代數(shù)數(shù)和超越數(shù)兩類,或正數(shù),負(fù)數(shù)和零三類。實(shí)數(shù)集合通常用字母R或R^n表示。而R^n表示n維實(shí)數(shù)空間。實(shí)數(shù)是不可數(shù)的。實(shí)數(shù)是實(shí)分析的核心研究對(duì)象。
實(shí)數(shù)的范圍包括有理數(shù)和無理數(shù)。完整的實(shí)數(shù)概念出現(xiàn)在19世紀(jì),通常人們歸功于戴德金(1831-1916)及康托(1845-1918)等人。他們...
絕對(duì)值最小的實(shí)數(shù)是0。絕對(duì)值是指一個(gè)數(shù)在數(shù)軸上所對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離,用“| |”來表示。|b-a|或|a-b|表示數(shù)軸上表示a的點(diǎn)和表示b的...
平方為正數(shù)的是實(shí)數(shù),平方為負(fù)數(shù)的是虛數(shù)。實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。虛數(shù)這個(gè)名詞是17世紀(jì)著名數(shù)學(xué)家笛卡爾創(chuàng)立,因?yàn)楫?dāng)時(shí)的觀念認(rèn)為這是真實(shí)...
實(shí)數(shù)(R)可以分為有理數(shù)(Q)和無理數(shù),其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就是有限小數(shù)和無限循環(huán)小數(shù);其中有理數(shù)又可以分為整數(shù)(Z)和分?jǐn)?shù)...
無限不循環(huán)小數(shù)是無理數(shù),有理數(shù)和無理數(shù)都是實(shí)數(shù)。無理數(shù),也稱為無限不循環(huán)小數(shù),不能寫作兩整數(shù)之比。若將它寫成小數(shù)形式,小數(shù)點(diǎn)之后的數(shù)字有無限...
不是任何實(shí)數(shù)都有算數(shù)平方根,算術(shù)平方根只有大于或等于0的數(shù)才有。而實(shí)數(shù)包括正實(shí)數(shù)和負(fù)實(shí)數(shù),負(fù)實(shí)數(shù)是沒有平方根的。實(shí)數(shù)在數(shù)學(xué)上是指定義為與數(shù)軸...
包括,實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的實(shí)數(shù),點(diǎn)相對(duì)應(yīng)的數(shù)。實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。有理數(shù)是由整數(shù)和分?jǐn)?shù)組成的數(shù)。...